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Shock and Detonation Physics

Th e Nexus between 
Reactive MD 
Simulations of RDX 
and the Reactive 
Euler Equations
Shirish M. Chitanvis (T-14)

In the past we have focused on pre-
ignition phenomena that cause a local 
temperature rise when a single void in 
high-melting explosive (HMX) collapses 

under the action of a shock wave. Working 
in the melting regime, a timeline can be 
associated with the collapse of a single void 
through a consideration of the time scales on 
which these mechanisms are activated. 

Among the phenomena we studied, the 
hydrodynamic mechanism is generally 
considered to be an important pre-ignition 
step. In this mechanism, the shock-driven 
incident side of the void impinges on the 
shadow side of the void and is brought to 
rest, causing a considerable temperature rise 
in the HMX. Th is mechanism comes into 
consideration as the void closes up under 
the action of the shock wave. Th e resulting 
increase in pressure and temperature causes 
a shock wave to emanate from the collapse. 
Th is shock wave very quickly attains 
cylindrical symmetry in our two-dimensional 
(2D) calculation. (See Fig. 1.) If the energy 
contained in this outgoing shock wave is 
suffi  ciently high, and the size of the hotpsot 
is suffi  ciently large, it could produce a local 
microdetonation. 

In order to study the energy release 
provided by the hydrodynamic collapse 
of the void, one needs to understand the 
chemical reaction pathway through which 
this homogeneous explosive decomposes. 
Very recently A. Strachan (T-14) found 
that the complicated reaction pathway in 
Royal Demolition Explosive (RDX) can 
be simply represented as a single-step 
energy release step governed by Arrhenius 
kinetics. Th e activation energy is about 1 eV 
and is weakly pressure-dependent. Th is 
result was obtained by using the ReaxFF 
potential developed at California Institute 
of Technology in cook-off -like simulations 
of RDX at high temperature and pressure. 
Th ese simulations were performed at various 
temperatures and pressures, and it is of 
interest to investigate the applicability of the 
resulting parameterization of the kinetics at a 
macroscopic scale. 

Th e incorporation of the single-step 
Arrhenius rate into continuum dynamics 
can be accomplished by solving the reactive 
Euler equations. Th e width of the reaction 
zone which develops as the rarefaction Taylor 
wave behind the von Neumann pressure spike 
may be estimated in an order of magnitude 
sense by the product of the sound speed 
(typically a kilometer per second or less) and 
the characteristic chemical time scale, viz., 
picoseconds. Th is yields a scale of the order of 
1/100th of a micron. Since voids in explosives 
are expected to be of the order of microns, 
it follows that a numerical solution of the 
reactive Euler equations would be at best a 
diffi  cult job in two dimensions. 

An alternative solution is to develop a subgrid 
model, such as Bdzil’s Detonation Shock 
Dynamics (DSD). Th is technique consists 
of performing an asymptotic (perturbative) 
expansion of the reactive Euler equations 
in a shock-based frame of reference and 
coordinate system. Th e formalism eventually 
reduces to the solution of a transcendental 
equation for the relation between the 
detonation velocity normal to the shock 
front (Dn) and the local curvature (κ). It is 
possible to obtain from this analysis an 
estimate of the minimum size and energy of 
the hotspot that would be required to sustain 
a microdetonation during void collapse in a 
melted homogeneous RDX sample. 

Figure 1—
Numerical simulation 
of a collapsing spheri-
cal void approximately 
0.145 microseconds 
aft er the launch of a 
shock wave.
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Th e reaction rate obtained by Strachan can be 
written down as:

R(T, ρ) = κ(ρ)exp(–(Ea + fρa /ρ)κT)(pico – s)
 κ(ρ) = exp(a – bρa/ρ)

a = 1.82561
b = 0.290392
f = 0.356

Ea = 21.472 (kcal/mol) (1)

where ρa is the initial density of the material.

If TCJ is the Chapman-Jouguet temperature, 
the rate R may be written as:

R T ,ρ( ) = κ exp −1 / ∈( ) exp T −TCJ

∈
 
  

 
  

                exp − fρa /ρ /κT + Ea /κTCJ( )
∈ = κTCJ

Ea

~ 0.13

T −TCJ ~∈  .  (2)

Th us є provides one with a small 
dimensionless parameter with which to 
perform an asymptotic analysis of the reactive 
Euler equations. One can now use the 
methods developed in [1], where the reactive 
Euler equations are written in the shock-
based frame of reference to obtain a formal 
solution to ϑ(є) as:
• Note that an extra 

assumption has been made 
in this model, viz., that 
the factor of (1 – λr) which 
appears in the conventional 
form for the single-step 
Arrhenius rate has been 
replaced by (1 – λr)

1/2. 
Physically this allows the 
reaction to be complete 
within a reaction zone 
of fi nite width. Th is is a 
reasonable assumption as 
long as the major fraction 
of the energy is released 
within a short distance. 
We have experimented with 
retaining the linear factor 
of (1 – λr) in our analysis, 
unsuccessfully.

• Furthermore, for the moment we utilized a 
polytropic equation of state to describe the 
explosive. We expect to replace it shortly 
with a realistic equation of state obtained 
directly from the MD simulations. 

A nonlinear Dn – κ relation was obtained 
from this formalism and used to compute 
the shape of a steady-state detonation front 
for the case of an unconfi ned cylinder of 
macroscopic dimension (Fig. 2), thereby 
completing the initial phase of the 
transportation of the reactive MD simulations 
to the continuum level.
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Figure 2—
Shape of the detonation 
front for an unconfi ned 
cylinder.




